
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1924
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Reconfigurable cache Implementation on FPGA
K.A.Naveen Kumar, M.Bharathi, S.A.Hariprasad

Abstract-Cache memory is a common structure in computer system and has an important role in microprocessor performance. The design
of a cache is an optimization problem that is mainly related with the maximization of the hit ratio and the minimization of the access time.
Some aspects related with the cache performance are the cache size, associativity, number of words per block and latency. In this paper,
we propose a reconfigurable cache design with two cache organizations direct mapped and 2-way Set Associative each with four modes
each. The designed instruction cache is of size 64 lines and each line can store a word of 18 bit wide. The designed cache is integrated
with an 8 bit Pico Blaze Processor. Hit ratio analysis is done for all the modes with different algorithms. Reconfiguration can be done at any
point in the assembly program by just changing the cache configuration port. The hit ratio analysis for the algorithms is reported.

Index terms: - Block-RAM, Cache memory, Direct mapped, FPGA, Miss Ratio, Reconfiguration, Set associative.

1. INTRODUCTION
 Cache memory is an important part in computer
system and has a major role in microprocessor performance.
There are three types of cache organizations they are: Direct
mapped cache, fully associative cache and set associative
cache. In a Direct mapped cache a block of main memory
page has to be mapped to a particular location in the cache.
This block is not allowed to be kept elsewhere in the cache.
In fully associative cache a block of main memory can be
kept anywhere in the cache. Set associative lies in between
the two extremes. In set associative a block of main memory
page has freedom to keep in any of the sets but within a set
it should be mapped to particular location. A lot of research
has been done on cache memories. The main research lines
focus on cache memories architecture simulation
oriented to performance analysis; low power cache
systems, implementation of fixed and reconfigurable
architecture on FPGA’s for testing theoretical designs and
analysis of cache implemented for high-end or for
embedded processors.

 In this paper a Reconfigurable cache with 8 cache
modes is designed. The designed cache has been integrated
with an 8-bit Picoblaze processor. Different algorithms are
analysed on all configurations. The hit ratio is analysed and
given a report mentioning which organization gives best hit
ratio for the algorithm. 8 Block RAM’s of FPGA are utilised
in the design to make cache with 64 lines of storage
capacity.

The paper is organized as follows: Section 2 reviews
related work in reconfigurable cache; Section 3 describes the
proposed design, implementation and the testing platform;

• K.A.Naveen Kumar Currently Pursuing M.tech in VLSI design
and Embedded systems at RVCE, Bangalore, India. Ph
+919738846497, Naveen.k.86@gmail.com.

• M.Bharthi, Associate Professor at RVCE, Bangalore, India, Ph
+919880423214, bharathim@rvce.edu.in.

• S.A.Hariprasad, Associate Professor at RVCE, Bangalore, India,
hariprasad@rvce.edu.in

Section 4 presents some results related to basic testing

algorithms. Finally, Section 5 presents the conclusions and
suggested future work.

2. PREVIOUS WORK
Ranganathan et al.[1] proposes a reconfigurable

memory organization that allows the on-chip SRAM to be
dynamically divided into different partitions that can be
assigned to cache and others conventional
processor activities. This organization can benefit
applications that doesn’t utilise the storage allocated to
large conventional caches.

In this paper authors have implemented an
associative partitioning method based on N-way
associative caches. During reconfiguration, Cache is
divided into partitions, with a granularity corresponding
to the number of ways of the conventional cache,
exploiting the conceptual division into ways already
present in a conventional cache. The design has the ability
to enable all of the cache ways when required to achieve
high performance, but to enable only a subset of ways
when cache demands are least. Thus it is mainly applicable
for low power embedded system applications.
Associativity based partitioning and overlapped wide-tag
partitioning are the two techniques used for variable sized
partitioning, and were able to address these partitions
efficiently. The addressing scheme must efficiently adapt
to dynamic resizing of the partition resizes.
 Huesung Kim et al. [2] proposes an algorithm for
reconfiguration. The algorithm is named as ABC meaning
Adaptive Balanced Computing. This does dynamic
resource configuration on demand from application
between memory and computing resources. Whenever
cache demand is less, then the cache can be utilised for
other computing applications.
 The paper proposed by the author David
H.Albonesi [6] provides selective cache ways which has the
ability to disable a subset of the ways in a set associative
cache during the periods of modest cache activity, while the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1925
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

full cache way remains operational for more cache-
intensive periods.
 In the paper authored by Santana Gil et.al [7]
proposes a reconfigurable cache with fixed size. The cache
can work as direct mapped (D.M.) cache or as 2 way set
associative (S.A.) cache. For each mode, we can select 1, 2, 4
or 8 words per block.

3. RECONFIGURABLE CACHE
 We propose a reconfigurable cache with fixed size.
The cache can work as direct mapped (D.M) cache or as 2
way set associative (S.A) cache. The different cache modes
are tabulated in Table I. The cache implements “write-
through” as the write policy and LRU(least recently used)
as replacement policy, in 2 way associative modes.

 TABLE 1. CACHE SUPPORTED MODES.
Mode b2 b1 b0 Configuration

0 0 0 0 Directed Mapped, 1 Word X Block
1 0 0 1 D.M., 2 W X B
2 0 1 0 D.M., 4 W X B
3 0 1 1 D.M., 8 W X B
4 1 0 0 2 Way Set Associative, 1 W X B
5 1 0 1 2 Way S.A., 2 W X B
6 1 1 0 2 Way S.A., 4 W X B
7 1 1 1 2 Way S.A., 8 W X B

A block diagram of the reconfigurable cache structure is
presented in Figure 3.1. The data, tags, valid bits and LRU
bits are stored in Block RAM of the FPGA. The cache
contains data bus, address input bus, output bus, a mode
selection write port and a status read only port. The cache
module is interfaced with the KCPSM3 processor code
which is available from XILINX [13].

3.1 PROPOSED WORK
Direct mapped and 2-Way set associative 1-Word X-

Block, 2-Word X-Block, 4-Word X Block and 8- Word X-
Block are designed. The basic blocks Mentioned in the
block diagram has been designed for the cache
functionality. The Cache configuration controller has the
option to choose one of the 8 cache modes. Tag address
Controller block will separate Tag address and Index
address fields of instruction address and then directs the
outputs to Tag Equivalence checker.
Tag Equivalence checker will compare the tag address in
the memory with the present tag address on the address
bus, if both are equal then Cache hit occurs and hit counter
is incremented. Then the Index address is decoded from the
remaining address field, this will point to the memory
location where the instruction is present in cache
instruction memory. The Cache instruction memory will
output the corresponding 18-bit wide instruction to the
processor. If there is an occurrence of cache miss, then the

instruction has to be fetched from main memory via Cache
Interface controller and fetches the data.

Fig 3.1 Reconfigurable Cache design Block diagram.

The cache fetches 8 consecutive instructions from

main memory; only required number of instructions will be
copied into cache according to the cache mode. For example
in the case of 1-word X-block only the first instruction is
copied remaining 7 instructions are discarded, this data will
be written to Cache memory through cache write controller.
The total number of memory access is considered for hit
and miss ratio calculations.
 The direct mapped cache is designed by taking 8
Block RAM’s each with 1024 memory locations of FPGA
and dividing each into equal parts thus 16 memory Blocks
are obtained. Since Block RAM is of dual ported each port
is allocated to upper and lower half memory for read and
write purposes. From Each memory block 4 lines are used
as cache lines and thus 8*(4 upper + 4 lower) =64 lines of
cache are designed. The main memory of 1024 memory
locations is grouped into 16 pages, thus each page contains
64 lines (16*64 =1024). In this direct mapped memory page-
0 of main memory can be mapped to cache memory block-0
and so on respectively until page-15.
 In case of direct mapped 2-Word X-Block, two
words from main memory are brought into cache memory.
They are mapped into block-0 and block-8 respectively. If
those two are filled then the next two instructions are
mapped to block-1 and block-9 correspondingly. Similarly
for 4-Word X-Block, four words are mapped to block-0,
block-1, block-8 and block-9 respectively. Similarly for 8-
Word X Block, eight consecutive words are mapped to
block-0, block-1, block-2, block-3, block-8, block-9, block-10
and block-11 respectively. For the 2-way set associative
cache the entire 64 lines of cache are divided into two sets
way-0 and way-1. In this mapping technique for 1-Word X
Block page-0 of main memory can be mapped to block-0 of
either way-0 or way-1. Immediately if page-64 is referred in
the main memory it will be mapped to the unoccupied
block-0 of either way-0 or way-1. But in the case of direct
mapped 1-Word X Block the block-0 content of cache is
overwritten which may lead to more number of misses. In

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1926
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

the case of set associative within a set direct mapped
technique is implemented, so this makes a compromise
between the direct mapped and fully associative mapping
technique. Similarly 2-Word X Block, 4-Word X Block and
8-Word X Block are designed for the 2-Way set associative
cache design. In the case of 2-Word X Block set associative
cache two consecutive words will be brought to the cache
memory and stored. Similarly 4 words and 8 words will be
brought from the main memory for the 4-Word X Block and
8-Word X Block set associative cache respectively. Suppose
both the ways in the 2-ways set associative are filled and a
new instruction is fetched which is having same index
address then it replaces the data which is least recently
used.
 The main memory code is available in the Xilinx
ISE simulator. Assembly programs are written with the
assembly instructions available for the KCPSM3 processor.
These files are saved with .psm extension and executed
using windows DOS command prompt. Once the file is
executed, KCPSM3 Assembler will generate several files in
the working directory. The required files from working
directory are <filename>.vhd, <filename>.v,
<filename>.coe, <filename>.m, <filename>.hex, <filename>
.log and <filename> .dec. The contents of registers, address
and instructions can be monitored in the output
waveforms. Whenever instruction is present in the cache,
hit flag is set and hit counter is incremented.
 The designed Cache has been interfaced with
Xilinx Picoblaze KCPSM3 8-bit processor. Assembly
program for the same processor has been Written,
Compiled, Executed and Results are simulated in the
XILINX ISE simulator. The cache successfully fetches the
instructions from the main memory and the hit counter
displays the number of hits for each cache configuration.
Reconfiguration is introduced in such a way that whenever
user want to change the cache mode, the cache
configuration port can be loaded with the value from 0 to 7
corresponding to the cache modes. This will reconfigure the
cache into the new mode and all the data present in the
cache will be flushed out but the cache hit counter will be
maintained as it is and continues with new mode.

4. RESULTS
 The following algorithms have been implemented
in the assembly language by instruction set provided in the
KCPSM3 processor. The miss ratio is analyzed for bubble
sort, merge sort, selection sort and binary search programs.
The Fig 4.1, 4.2, 4.3, 4.4 and 4.5 shows the miss ratio plots
for bubble sort, merge sort, selection sort, binary search and
alarm programs respectively.

 Fig.4.1 Bubble sort

 Fig.4.2 Merge sort

 Fig.4.3 Selection sort

 Fig.4.4 Binary search

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1927
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig.4.5 Alarm program

 From the miss ratio plots it can be inferred, for the
entire algorithms miss ratio is worst for 1-Word X Block.
The lowest miss rate is observed for modes with 8-Word X
Block. No significant difference is appreciated between
direct mapped and set associative modes for bubble sort,
selection sort, and binary search programs, but there is
difference in miss ratio for merge sort 1-Word X Block. The
alarm program in fig 4.5 shows significant difference for
direct mapped and set associative. The fig 4.6 shows the
instruction opcode stored in FPGA main memory
BlockRAM generated for merge sort program.

Fig.4.6 Merge sort RAM

 The Fig 4.7 shows the waveform containing hit-
counter, total memory access, address, instruction opcode
and some registers of the processor for bubble sort
program.

 Fig.4.7.Bubble sort hit-counter

 Fig.4.8 RTL schematic of top module block.

Fig 4.8 shows the RTL schematic of the top

module. Fig 4.8 shows the expansion of the top module
with internal blocks such as processor, cache configuration
controller and reconfigurable cache etc.

Fig.4.9 RTL schematic view.

Fig 4.10 shows the synthesis report containing no. of LUT

blocks utilised for the design.

 Fig.4.10 Device utilization

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1928
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

5. CONCLUSIONS
The reconfigurable cache with 8 cache modes has been

implemented on XILINX Spartan-3E board [14]. In addition
a Picoblaze hardware/software platform for control and
testing purposes is developed. Some simple testing
algorithms have been programmed and the results are
discussed in this paper. The dynamic reconfigurable cache
can be achieved by taking the miss ratio as the parameter.
Whenever miss ratio reaches certain threshold value it can
be switched to some other configuration. In this way miss
ratio can be frequently monitored and dynamic
reconfiguration can be achieved.

6. REFERENCES

[1] Ranganathan, P., Adve, S. and Jouppi, N. P., “Reconfigurable caches
and their application to media processing”. ACM SIGARCH
Computer Architecture News, 2000, 28(2), 214-224. doi:
10.1145/342001.339685,.

[2] H. Kim, A.K. Somani, and A. Tyagi, “A Reconfigurable
Multifunction Computing Cache Architecture”, IEEE Transactions
on VLSI, Vol. 9, No. 4, pp. 509-523, Aug., 2001.

[3] Zhang, C., Vahid, F., & Najjar, W., A highly configurable cache
architecture for embedded systems. Proceedings of the 30th Annual
International Symposium on Computer Architecture (ISCA’03),
June, 2003.

[4] Peng, M., Sun, J., & Wang, Y. A Phase-Based Self-Tuning Algorithm
for Reconfigurable Cache. First International Conference on the
Digital Society (ICDS'07), 27-27. IEEE. doi: 10.1109/ICDS.2007.2,
2007.

[5] Chen, L., Zou, X., Lei, J., & Liu, Z. (2007). Dynamically
Reconfigurable Cache for Low-Power Embedded System. Third
International Conference on NaturalComputation (ICNC 2007) Vol

[6] V, (Icnc), 180-184. Ieee. doi: 10.1109/ICNC.2007.346.
[7] Albonesi, D. H. “Selective cache ways: on demand cache resource

allocation”. Journal of Instruction Level Parallelism May. 2002.
[8] Santana Gil, A.D., Benavides, Hernandez, Herruzo.,”Reconfigurable

Cache implemented on an FPGA” 2010 International Conference on
Reconfigurable Computing.05695314.

[9] CACTI 4.0 Tarjan, David; Thoziyoor, Shyamkumar; Jouppi,
Norman P. HPL-2006-86 20060606, 2006. 0

[10] Computation (ICNC 2007) Vol V, (Icnc), 180-184. IEEE. doi:
0.1109/ICNC.2007.346.

[11] Zhang, C., & Vahid, F. Self-tuning cache architecture for embedded
systems. ACM Transactions on Embedded Computing System,
Vol.3, May. 2004.

[12] Ting, Y., & Chen, B.. Combining selective cache line replacement
and active management for data caching. Thesis. 2005.

[13] Balasubramonian, R., & Albonesi, D. Memory Hierarchy
Reconfiguration for Energy and Performance in General Purpose
Architecture. Proc of 33 rd Intl Sym on Microarchiterture, 245-257,
Dec., 2000.

[14] Coutinho L. M., Mendes J. L., Martins C. A., Dynamically
Reconfigurable Split Cache Architecture. 2008 International
Conference on Reconfigurable Computing and FPGAs, 163-168.
IEEE. doi: 10.1109/ReConFig. 2008.46.

[15] www.xilinx.com, 2013

[16] http://www.xilinx.com/support/documentation/ip_documentati
on/ug129.pdf, 2013

IJSER

http://www.ijser.org/
http://www.xilinx.com/
http://www.xilinx.com/support/documentation/ip_documentation/ug129.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug129.pdf

	1. INTRODUCTION
	2. PREVIOUS WORK
	3. RECONFIGURABLE CACHE
	3.1 PROPOSED WORK
	4. RESULTS
	5. CONCLUSIONS

